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Abstract. We consider the sum of the first two or three terms from the McMahon asymptotic
expansion of the zeros of the cylinder function Cν(x) = Jν(x) cosα−Yν(x) sin α, 0 � α < π and
study when this sum represents as an upper or lower bound for the corresponding zero. The results
established extend—in particular—the case of the zeros of Jν(x), when we recover the inequalities
found by Förster and Petras (Förster K J and Petras K 1993 ZAMM 73 232–6) for − 1

2 � ν � 1
2 .

Our approach is based on a Sturmian comparison theorem discussed in section 2.

1. Introduction

Let jνκ , κ = k − α/π , k = 1, 2, . . . , denote the kth positive zero cνk of the cylinder function

Cν(x) = Jν(x) cosα − Yν(x) sin α 0 � α < π

where Jν(x) and Yν(x) are the Bessel functions of the first and second kind, respectively. For
more information on the notation jνκ we refer to [2]. In particular, we have

j1/2,κ = κπ for κ > 0 j−1/2,κ = (κ − 1
2 )π for κ > 1

2 . (1.1)

When ν fixed and κ large, McMahon established the following asymptotic result [8, p 506]:

jνκ = βνκ − µ − 1

8βνκ

− 4(µ − 1)(7µ − 31)

3(8βνκ)3
+ O(β−5

νκ ) κ → ∞ (1.2)

where

βνκ =
(
κ +

ν

2
− 1

4

)
π µ = 4ν2.

Further terms from the McMahon asymptotic formula can be found, e.g., in [8, p 506].
Concerning the first term βνκ of (1.2), it is proved in [6] that

jνκ � βνκ for |ν| � 1
2 (1.3a)

jνκ � βνκ for |ν| � 1
2 (1.3b)

where equalities occur if and only if |ν| = 1
2 , in accordance with (1.1). The inequality (1.3a)

is already presented in [8, p 506].
In the whole paper we make the restriction on κ that βνκ > 0. This is a real restriction

only in the case when |ν| < 1
2 due to (1.3b).
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In the particular case of the Bessel function Jν(x), Hethcote [5] established the more
informative result

jνk � βνk − µ − 1

8βνk

0 � ν � 1
2 k = 1, 2, . . . , (1.4)

while, for |ν| � 1
2 and k = 1, 2, . . . , Förster and Petras [3] obtained the inequalities

βνk − µ − 1

8βνk

− 4(µ − 1)(7µ − 31)

3(8βνk)3
� jνk � βνk − µ − 1

8βνk

(1.5)

where the upper bound is the same as in (1.4), but extended also to negative values of ν.
In this paper we prove two theorems. The first is concerned with the two-term

approximation of the asymptotic expansion (1.2). The second one gives inequalities for jνκ
using the three-term approximation. The results are formulated as follows.

Theorem 1. For jνκ defined above, the following inequalities hold:

jνκ < βνκ − µ − 1

8βνκ

for |ν| < 1

2
provided jνκ � 2

√
1

8
− 1

2
ν2 (1.6a)

jνκ > βνκ − µ − 1

8βνκ

for
1

2
< |ν| <

√
31

28

provided jνκ � 503 + 196ν2

24
√

70

√
4ν2 − 1

31 − 28ν2
(1.6b)

jνκ < βνκ − µ − 1

8βνκ

for |ν| �
√

31

28
κ > 0 ν + κ > 0. (1.6c)

Theorem 2. Let jνκ be defined as above. Then

jνκ > F(βνκ) for |ν| < 1
2 provided βνκ �

√
5
8 − 1

2ν
2 (1.7)

jνκ < F(βνκ) for
1

4
< ν2 <

31 + 4
√

78

28
jνκ � F

(
1

2
ν2 +

3

8

)
(1.8a)

jνκ < F(βνκ) for ν2 � 31 + 4
√

78

28
κ > 0 ν + κ > 0 (1.8b)

where

F(β) = β − µ − 1

8β
− 4(µ − 1)(7µ − 31)

3(8β)3
.

The statements in theorems 1, 2 are not sharp. Numerical calculation shows, for example,
that (1.6a) always holds when ν = 0 and β0,κ > 0. The restrictions on κ (actually on jνκ
or βνκ ) are consequences of the method used. The method is an application of a Sturmian
comparison theorem which will be proved in the next section.

The results established in this paper are general in the sense that they hold for every zero
of every cylinder function subject to a reasonable lower bound on the zeros. The restrictions
in (1.6a), (1.6c), (1.7), (1.8a), (1.8b) are satisfied for all κ � 1 when ν � 0 because we
have the inequality jνκ � jν1 � ν + j01 and j01 = 2.40, . . . . For negative ν we can use the
identity [1]

jνκ = j−ν,ν+κ (ν > −κ).

(In addition, we can observe the fact that we also have the equality βνκ = β−ν,ν+κ .)
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Finally, we want to refer to a recent paper [4] of Gatteschi and Giordano who give error
bounds for the two- and three-term approximations of McMahon’s formula in the particular
case of the zeros jνk . Their bounds are quite sharp when − 1

2 < ν < 1
2 , but when ν > 1

2 (the
case ν < − 1

2 is not discussed there), they make the restriction jνk > (2ν + 1)(2ν + 3)/π ,
which excludes several zeros jνk , when ν is large but k is not sufficiently large. This happens
because for fixed k the asymptotic formula [8, p 521]

jνk = ν + akν
1/3 + O(ν−1/3) ν → ∞

where ak is independent of ν, holds.
We conclude this section by mentioning that the function

√
xCν(x) is a solution of the

linear second-order differential equation [8, p 117]

y ′′ +

(
1 +

2c

x2

)
y = 0 (1.9)

where

2c = 1
4 − ν2. (1.10)

2. A Sturmian comparison theorem

The main result of this section is a Sturmian comparison theorem which will be used in the
proof of theorems 1, 2. First we make a simple observation which will be written as the
following lemma.

Lemma 1. Let the function ϕ(x) be three-times differentiable on some interval I with
ϕ′(x) > 0. Then the functions

z1(x) = ρ(x) sin ϕ(x) and z2(x) = ρ(x) cosϕ(x)

are linearly independent solutions of the differential equation

z′′ + q(x)z = 0 (2.1)

where

ρ(x) = [ϕ′(x)]−1/2 and q(x) = [ϕ′(x)]2 − ρ ′′(x)
ρ(x)

. (2.2)

Proof. The statement can be easily verified by direct substitution of the functions ρ sin φ and
ρ cosφ into the differential equation (2.1). �

Now we formulate our comparison theorem.

Lemma 2. Let y(x) be a solution of the differential equation

y ′′ + q̃(x)y = 0 x ∈ Ĩ = (ã,∞) (2.3)

with consecutive zeros at x̃k = (k − 1)π + αk in Ĩ , k = 1, 2, . . . , such that

lim
k→∞

αk = α (finite). (2.4)

Let ϕ(x) satisfy the same properties as in lemma 1 with I = (a,∞) and also the condition

lim
x→∞[ϕ(x) − x] = 0. (2.5)

Suppose that

q̃(x)
<

(>)
q(x) for x � â � max{a, ã} (2.6)
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where q(x) is the same as in (2.2). Let k1 be an integer such that x̃k1 � â. Then let

k̂ =
{

k1 if q̃(x) < q(x) for x � x̂

max{k0, k1} if q̃(x) > q(x) for x � x̂

where k0 satisfies the inequality (k0 − 1)π + α � ϕ(a).
Define the values xk̂ , xk̂+1, . . . by

ϕ(xk) = (k − 1)π + α for k � k̂. (2.7)

Then {xk}∞
k=k̂

are consecutive zeros of z(x) = cosα z1(x)− sin α z2(x) satisfying the relations

x̃k
<

(>)
xk for k = k̂, k̂ + 1, . . . and lim

k→∞
(xk − x̃k) = 0. (2.8)

The solution z(x) is unique up to a constant multiple.

Proof. For k = 1, 2, . . . consider the solution Zk(x) = ρ(x) sin[ϕ(x) − ϕ(x̃k)] of (2.1), and
observe that y(x) and Zk(x) have a common zero at x = x̃k . Suppose that q̃(x) < q(x) holds.
Then equation (2.1) is a Sturmian majorant of (2.3). Consequently, by the standard Sturm
comparison theorem [7, p 19], Zk(x) has at least one zero, say ξ , in the interval (x̃k, x̃k+1) with
ϕ(ξ) − ϕ(x̃k) = π and ξ < x̃k+1. Recalling that ϕ(x) is increasing, we get

ϕ(x̃k) + π = ϕ(ξ) < ϕ(x̃k+1).

Therefore

ϕ(x̃k) − (k − 1)π < ϕ(x̃k+1) − kπ.

Hence the sequence {ϕ(x̃k) − (k − 1)π}∞k=1 is increasing and by (2.4), (2.5)

lim
k→∞

[ϕ(x̃k) − (k − 1)π ] = lim
k→∞

[ϕ(x̃k) − x̃k] + lim
k→∞

(x̃k − (k − 1)π) = α.

Thus we obtain

ϕ(x̃k) − (k − 1)π < α

or by (2.7) ϕ(x̃k) < (k − 1)π + α = ϕ(xk), consequently x̃k < xk .
Since x̃k = (k − 1)π + αk , ϕ(xk) = (k − 1)π + α, the limit relation limk→∞(xk − x̃k) = 0

follows from (2.4), (2.5).
The case q̃(x) > q(x) can be dealt in a similar way, which completes the proof of

lemma 2. �

The application of lemma 2 might involve a difficult calculation particularly in justifying
the inequality in (2.6). Sometimes it is preferable to work with the inverse function f = ϕ−1

of ϕ. Thus we introduce the function

x = f (ϕ) > ã with f ′(ϕ) > 0 for ϕ > ϕ̃. (2.9)

Differentiation of f (ϕ) in (2.9) with respect to x gives

1 = f ′(ϕ)ϕ′(x)

therefore

ϕ′(x) = 1

f ′(ϕ)
.

Then, by (2.2)

ρ2(x) = f ′(ϕ) (2.10)
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and differentiation of ρ2(x) with respect to x gives

2ρ(x)ρ ′(x) = f ′′(ϕ)
f ′(ϕ)

hence

ρ ′(x)
ρ(x)

= 1

2ρ2(x)

f ′′(ϕ)
f ′(ϕ)

= 1

2

f ′′(ϕ)
[f ′(ϕ)]2

.

Further differentiation yields

ρ ′′(x)
ρ(x)

=
[
ρ ′(x)
ρ(x)

]2

+
1

2

[
f ′′′(ϕ)

[f ′(ϕ)]2
− 2

[f ′′(ϕ)]2

[f ′(ϕ)]3

]
ϕ′(x)

= 1

4

[
f ′′(ϕ)

[f ′(ϕ)]2

]2

+
1

2

f ′(ϕ)f ′′′(ϕ)
[f ′(ϕ)]4

− [f ′′(ϕ)]2

[f ′(ϕ)]4

= 2f ′(ϕ)f ′′′(ϕ) − 3[f ′′(ϕ)]2

4[f ′(ϕ)]4
.

Now inequality (2.6) takes the form

q̃[f (ϕ)] <

(>)

1

[f ′(ϕ)]2
− 2f ′(ϕ)f ′′′(ϕ) − 3[f ′′(ϕ)]2

4[f ′(ϕ)]4
for ϕ > ϕ̂ (2.11)

where

â = max{f (ϕ̂), f (ϕ̃)} (2.12)

and (2.8) becomes

x̃k
<

(>)
f ((k − 1)π + α). (2.13)

In our applications the function q̃(x) will be the coefficient in (1.9), i.e. q̃(x) = 1 + 2c/x2,
and x̃k = cνk = jνκ , consequently ã = 0. The consecutive zeros of Cν(x) are x̃1 = jν,κ ,
x̃2 = jν,κ+1, x̃3 = jν,κ+2, . . . , hence for the α in (2.4) we have by (1.2) α = βνκ .

Remark 2. In the particular case when ϕ(x) = x, we recover the results (1.3a), (1.3b) because
q(x) = 1 by (2.2) and application of lemma 2 with q̃(x) = 1 + 2c/x2 for c > 0 (or c < 0)
gives the already known bounds.

3. Two-term approximation

Proof of theorem 1. We choose

x = f (ϕ) = ϕ +
c

ϕ
.

Then

ϕ(x) = x +
√
x2 − 4c

2

and we have

a =
{

2
√
c if c � 0

−∞ if c < 0
ϕ̃ = ϕ(a) =

{ √
c if c � 0

0 if c < 0
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and condition (2.5) of lemma 2 is satisfied. We will show that (2.6) is valid with ϕ̂ = √|c|—
except the case (b). To this end we consider the difference

q̃[f (ϕ)] − 1

[f ′(ϕ)]2
+

2f ′(ϕ)f ′′′(ϕ) − 3[f ′′(ϕ)]2

4[f ′(ϕ)]4
= c

P (c, ϕ2)

4(ϕ2 − c)4(ϕ2 + c)2
(3.1)

where

P(c, z) = c5 − 3c2z2 − 10c3z2 − 6cz3 + 16c2z3 − 3z4 − 7cz4.

In the case |ν| < 1
2 , we get by (1.10) that 1

8 � c > 0 and

P(c, c + s) = −12c4 − 36c3s − (39c2 + 4c3)s2 − (18c + 12c2)s3 − (3 + 7c)s4.

Clearly, all the coefficients of this polynomial (of the variable s) are negative for 0 < c � 1
8 .

Therefore P(c, c + s) < 0 for s � 0. Thus equation (2.1) is a Sturmian majorant of (1.9),
i.e. q̃(x) < q(x) for x � x̂ = f (ϕ̂) = 2

√
c and an application of lemma 2 gives (1.6a), i.e.

part (a) of theorem 1.

For the proof of (1.6b) we make the following substitution:

z = 90

7

c

−3 − 7c
+ s − 3

7
< c < 0

in the polynomial P(c, z) above. We get

2401(3 + 7c)3P

(
c,

90

7

c

−3 − 7c
+ s

)
= c4(−12 854 700 − 3947 391c + 100 842c2 + 117 649c3)

+1260c3(10 971 + 17 619c + 3430c2)s

−49c2(3 + 7c)(37 701 + 32 739c + 3430c2)s2

+686c(3 + 7c)2(159 + 56c)s3 − 2401(3 + 7c)3s4.

On the right-hand side the coefficient of si is negative for i = 0, 1, . . . , 4 hence in (3.1)
cP (c, ϕ2) is positive for ϕ � ϕ̂, where ϕ̂ = √

90c/(7(−3 − 7c)), implying that equation (1.9)
is a Sturmian majorant of (2.1). An application of lemma 2 gives the desired result (1.6b) with

â = f (ϕ̂) = 69−49c
3
√

70

√
−c

3+7c . By (1.3b) the restriction α = βνκ > 0 = ϕ(a) is clearly satisfied.

It remains to prove (1.6c). To this end we shall make use of the subtitution

z = −c + s c � − 3
7

and we find

P(c,−c + s) = −(3 + 7c)s4 + (6c + 44c2)s3 − (3c2 + 100c3)s2 + 96c4s − 32c5

where all the coefficients are positive. This shows that the function in (3.1) is negative for
ϕ � ϕ̂ = √|c| and that q̃(x) < q(x) for x > f (ϕ̂) = 0. Again, an application of lemma 2
gives (1.6c). This completes the proof of theorem 1 on the two-term approximation of the
McMahon formula. �

4. Three-term approximation

Proof of theorem 2. Let f (ϕ) = F(ϕ), i.e.

x = f (ϕ) = ϕ +
c

ϕ
− 3c + 7c2

6ϕ3
.
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Now the inverse function ϕ = ϕ(x) of x = f (ϕ) is not at our disposal as it was in the case
of two-term approximation. So we have to enter in the investigation of the behaviour of the
function f (ϕ). By (2.9) we find

ϕ̃2 =




−c +
√
(6c + 17c2)/3

2
for c � 0

c +
√−6c − 13c2

2
for − 6

17
< c < 0

−c +
√
(6c + 17c2)/3

2
for c � − 6

17
.

By (2.11) we have to deal with the expression

q̃[f (ϕ)] − 1

[f ′(ϕ)]2
+

2f ′(ϕ)f ′′′(ϕ) − 3[f ′′(ϕ)]2

4[f ′(ϕ)]4

= c
Q(c, ϕ2)

(3c + 7c2 − 6cϕ2 − 6ϕ4)2(3c + 7c2 − 2cϕ2 + 2ϕ4)4
(4.1)

where

cQ(c, z) = 729c6 + 10 206c7 + 59 535c8 + 185 220c9 + 324 135c10

+302 526c11 + 117 649c12

−(4860c6 + 56 700c7 + 264 600c8 + 617 400c9 + 720 300c10 + 336 140c11)z

+(−972c5 + 1296c6 + 65 016c7 + 289 296c8 + 498 036c9 + 307 328c10)z2

+(−648c4 + 1728c5 + 34 992c6 + 106 176c7 + 107 800c8 + 21 952c9)z3

−(864c4 + 26 568c5 + 146 376c6 + 293 048c7 + 198 744c8)z4

+(4752c3 + 61 776c4 + 289 296c5 + 578 480c6 + 418 656c7)z5

−(11 664c3 + 100 224c4 + 276 912c5 + 248 064c6)z6

+(−11 232c2 − 24 192c3 + 79 200c4 + 173 824c5)z7

+(22 896c2 + 35 136c3 − 44 400c4)z8 + (8640c + 19 584c2 + 15 936c3)z9.

We distinguish two cases: (a) 0 � c � 1
8 , (b) c < 0. In the first case we consider the

polynomial

Q(c, c + 1
2 + s) = 1

16 (270 + 5499c + 52 266c2 + 313 233c3

+1345 148c4 + 4392 224c5 + 11 037 272c6 + 20 895 304c7

+28 536 368c8 + 26 301 648c9 + 14 562 304c10 + 3647 952c11)

+ 1
4 (1215 + 23 004c + 198 945c2 + 1052 538c3

+3844 000c4 + 10 270 636c5 + 20 383 864c6 + 29 365 912c7

+28 873 904c8 + 17 187 088c9 + 4637 136c10)s

+(2430 + 42 174c + 326 709c2 + 1499 406c3

+4557 705c4 + 9657 892c5 + 14 417 868c6

+14 649 552c7 + 9128 780c8 + 2627 120c9)s2

+2(5670 + 88 641c + 602 586c2 + 2340 903c3

+5737 588c4 + 9200 844c5 + 9557 600c6 + 5940 772c7 + 1694 160c8)s3

+2(17 010 + 234 171c + 1358 604c2 + 4310 733c3

+8103 146c4 + 9085 192c5 + 5700 028c6 + 1578 676c7)s4
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+8(8505 + 99 981c + 475 839c2 + 1166 727c3 + 1541 184c4

+1025 974c5 + 262764c6)s5

+16(5670 + 54 432c + 200 115c2 + 344 940c3 + 267 467c4 + 66 508c5)s6

+32(2430 + 17 739c + 45 594c2 + 45 669c3 + 12260c4)s7

+48(810 + 3933c + 5898c2 + 2063c3)s8 + 192(45 + 102c + 83c2)s9.

We find that all the coefficients of si , i = 0, 1, . . . , 9, are positive for 0 � c � 1
8 . Thus

Q(c, ϕ2) is positive for ϕ2 � c + 1
2 � ϕ̃2 and q̃(x) > q(x). We can apply lemma 2 and

by (2.13) we obtain (1.7). �

For c < 0 we use the substitution

ϕ2 = −c + s + 1
2

and we have

Q(c,−c + s + 1
2 ) =

9∑
j=0

Aj(c)s
j .

Now we have to show that all the coefficients of si are positive. Making use of the symbolic
programing of Mathematica, we find

A0(c) = 1
16 (−5767 344c11 + 44 872 320c10 − 9006 256c9 + 6227 056c8

−2272 888c7 + 274 488c6 + 399 264c5 − 148 756c4

−30 711c3 + 23 754c2 − 4221c + 270)

A1(c) = 5207 092c10 − 9543 052c9 + 3479 788c8 − 1665 898c7

+437 934c6 + 137 455c5 − 118 304c4 − 1
2 9 915c3

+ 1
4 68 481c2 − 3969c + 1215

4

A2(c) = −14 325 712c9 + 16 903 900c8 − 7706 160c7 + 2908 572c6

−50 780c5 − 53 5179c4 + 65 382c3 + 79 497c2 − 25 866c + 2430

A3(c) = 19 873 632c8 − 19 373 048c7 + 9076 800c6 − 1980 488c5

−1028 392c4 + 422 862c3 + 180 036c2 − 94 878c + 11 340

A4(c) = −17 212 760c7 + 15 010 008c6 − 5902 576c5 − 417 308c4

+1036 266c3 + 161 928c2 − 212 058c + 34 020

A5(c) = 10 051 680c6 − 7736 848c5 + 1500 672c4 + 1175 928c3

−112 392c2 − 288 792c + 68 040

A6(c) = −4046 656c5 + 2366 960c4 + 430 656c3 − 390 672c2 − 217 728c + 90720

A7(c) = 1102 720c4 − 248 160c3 − 317 376c2 − 54 432c + 77 760

A8(c) = −187 824c3 − 69 408c2 + 33 264c + 38 880

A9(c) = 15 936c2 + 19 584c + 8640.

Now we prove that all A0(c), A1(c), . . . , A9(c) are positive for c � 0. To this end we calculate
the zeros of Aj(c), j = 0, 1, . . . , 9. Using again Mathematica, we find:

A0(c) has only one real zero at c = 7.592 59, hence A0(c) > 0 for c � 0;
A1(c) has only two real zeros at c = 0.253 885 and c = 1.502 57, hence A1(c) > 0 for

c � 0.
Similarly we find that A2(c) = 0 at 0.726 393, A3(c) has no real zeros,
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A4(c) = 0 at 0.450 744,
A5(c) has no real zeros,
A6(c) = 0 at 0.347 347,
A7(c) has no real zeros,
A8(c) = 0 at 0.572 203, finally A9(c) has no real zeros.
These calculations show that Aj(c) > 0 for c � 0 therefore Q(c, z) > 0 for

z � −c + 1
2 = |c| + 1

2 . By (2.11) we have ϕ̂2 = max{ϕ̃2,−c + 1
2 } hence

ϕ̂2 =
{

−c + 1
2 for −6−√

78
14 < c < 0

ϕ̃2 for c � −6−√
78

14 .

Then we have q̃(x) < q(x) in (2.6) for x > â = f (ϕ̂), hence application of lemma 2 gives
the relations (1.8a) and (1.8b). �
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[2] Elbert Á and Laforgia A 1984 On the square of the zeros of the Bessel functions SIAM J. Math. Anal. 15 206–12
[3] Förster K J and Petras K 1993 Inequalities for the zeros of ultraspherical polynomials and Bessel functions ZAMM

73 232–6
[4] Gatteschi L and Giordano C 1999 Error bounds for McMahon’s asymptotic approximation of the zeros of the

Bessel functions Integral Trasforms and Special Funct. 8 at press
[5] Hethcote H W 1970 Bounds for zeros of some special functions Proc. Am. Math. Soc. 25 72–4
[6] Laforgia A 1980 Sugli zeri delle funzioni di Bessel Calcolo 17 211–20
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